156 research outputs found

    Critical Viscosity Exponent for Fluids: What Happend to the Higher Loops

    Full text link
    We arrange the loopwise perturbation theory for the critical viscosity exponent xηx_{\eta}, which happens to be very small, as a power series in xηx_{\eta} itself and argue that the effect of loops beyond two is negligible. We claim that the critical viscosity exponent should be very closely approximated by xη=815π2(1+83π2)0.0685x_{\eta}=\frac{8}{15 \pi^2}(1+\frac{8}{3 \pi^2})\simeq 0.0685.Comment: 9 pages and 3 figure

    Growth Models and Models of Turbulence : A Stochastic Quantization Perspective

    Full text link
    We consider a class of growth models and models of turbulence based on the randomly stirred fluid. The similarity between the predictions of these models, noted a decade earlier, is understood on the basis of a stochastic quantization scheme.Comment: 3 page

    Coupled non-equilibrium growth equations: Self-consistent mode coupling using vertex renormalization

    Get PDF
    We find that studying the simplest of the coupled non-equilibrium growth equations of Barabasi by self-consistent mode coupling requires the use of dressed vertices. Using the vertex renormalization, we find a roughness exponent which already in the leading order is quite close to the numerical value.Comment: 7 pages, 3 figure

    Critical light scattering in liquids

    Full text link
    We compare theoretical results for the characteristic frequency of the Rayleigh peak calculated in one-loop order within the field theoretical method of the renormalization group theory with experiments and other theoretical results. Our expressions describe the non-asymptotic crossover in temperature, density and wave vector. In addition we discuss the frequency dependent shear viscosity evaluated within the same model and compare our theoretical results with recent experiments in microgravity.Comment: 17 pages, 12 figure

    Theory of Ferromagnetism in Diluted Magnetic Semiconductor Quantum Wells

    Full text link
    We present a mean field theory of ferromagnetism in diluted magnetic semiconductor quantum wells. When subband mixing due to exchange interactions between quantum well free carriers and magnetic impurities is neglected, analytic result can be obtained for the dependence of the critical temperature and the spontaneous magnetization on the distribution of magnetic impurities and the quantum well width. The validity of this approximate theory has been tested by comparing its predictions with those from numerical self-consistent field calculations. Interactions among free carriers, accounted for using the local-spin-density approximation, substantially enhance the critical temperature. We demonstrate that an external bias potential can tune the critical temperature through a wide range.Comment: 4 pages, 3 figures, submitted to Phys. Rev.

    Field Effect Magnetization Reversal in Ferromagnetic Semiconductor Quantum Wells

    Full text link
    We predict that a novel bias-voltage assisted magnetization reversal process will occur in Mn doped II-VI semiconductor quantum wells or heterojunctions with carrier induced ferromagnetism. The effect is due to strong exchange-coupling induced subband mixing that leads to electrically tunable hysteresis loops. Our model calculations are based on the mean-field theory of carrier induced ferromagnetism in Mn-doped quantum wells and on a semi-phenomenological description of the host II-VI semiconductor valence bands.Comment: 5 pages, 4 figure

    Center or Limit Cycle: Renormalization Group as a Probe

    Full text link
    Based on our studies done on two-dimensional autonomous systems, forced non-autonomous systems and time-delayed systems, we propose a unified methodology - that uses renormalization group theory - for finding out existence of periodic solutions in a plethora of nonlinear dynamical systems appearing across disciplines. The technique will be shown to have a non-trivial ability of classifying the solutions into limit cycles and periodic orbits surrounding a center. Moreover, the methodology has a definite advantage over linear stability analysis in analyzing centers

    Novel universality classes of coupled driven diffusive systems

    Full text link
    Motivated by the phenomenologies of dynamic roughening of strings in random media and magnetohydrodynamics, we examine the universal properties of driven diffusive system with coupled fields. We demonstrate that cross-correlations between the fields lead to amplitude-ratios and scaling exponents varying continuosly with the strength of these cross-correlations. The implications of these results for experimentally relevant systems are discussed.Comment: To appear in Phys. Rev. E (Rapid Comm.) (2003

    Renormalization group and isochronous oscillations

    Full text link
    We show how the condition of isochronicity can be studied for two dimensional systems in the renormalization group (RG) context. We find a necessary condition for the isochronicity of the Cherkas and another class of cubic systems. Our conditions are satisfied by all the cases studied recently by Bardet et al \cite{bard} and Ghose Choudhury and Guh

    Fluctuation-dissipation relationship in chaotic dynamics

    Full text link
    We consider a general N-degree-of-freedom dissipative system which admits of chaotic behaviour. Based on a Fokker-Planck description associated with the dynamics we establish that the drift and the diffusion coefficients can be related through a set of stochastic parameters which characterize the steady state of the dynamical system in a way similar to fluctuation-dissipation relation in non-equilibrium statistical mechanics. The proposed relationship is verified by numerical experiments on a driven double well system.Comment: Revtex, 23 pages, 2 figure
    corecore